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We analyse the so-called small-world network model (originally devised by Strogatz and
Watts), treating it, among other things, as a case study of non-linear coupled difference
or differential equations. We derive a system of evolution equations containing more of
the previously neglected (possibly relevant) non-linear terms. As an exact solution of this
entangled system of equations is out of question we develop a (as we think, promising)
method of enclosing the “exact” solutions for the expected quantities by upper and lower
bounds, which represent solutions of a slightly simpler system of differential equation.
Furthermore we discuss the relation between difference and differential equations and
scrutinize the limits of the spreading idea for random graphs. We then show that there
exists in fact a “broad” (with respect to scaling exponents) crossover zone, smoothly
interpolating between linear and logarithmic scaling of the diameter or average distance.
We are able to corroborate earlier findings in certain regions of phase or parameter space
(as e.g. the finite size scaling ansatz) but find also deviations for other choices of the
parameters. Our analysis is supplemented by a variety of numerical calculations, which,
among other things, quantify the effect of various approximations being made. With
the help of our analytical results we manage to calculate another important network
characteristic, the (fractal) dimension, and provide numerical values for the case of the
small-world network.
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1. INTRODUCTION

As part of a broader interest in complex systems, the analysis of large networks
of interacting agents or simply certain degrees of freedom is currently under intense
study. Recently a presumably far-reaching core-concept came to the fore, called
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the small-world effect, (for an incomplete list of references see, for example [1]
to [8]). To put it briefly, the presence of a surprisingly small number of random
edges, inserted in an initially quite regular graph, may have drastic effects as to the
average distance between nodes or the expected diameter of the network. These
additional random edges, called short cuts, may typically connect regions which
have been quite a distance appart in the original regular graph, thus effecting a
drastic shrinkage of average distance or diameter in certain regions of parameter
space.

It is perhaps noteworthy that we detected a similar phenomenon in quite
a different area of modern physics (quantum space-time physics) at almost the
same time, being completely unaware of similar findings in other fields of natural
science. We called this phenomenon a microscopic wormhole structure ([9],[10]).

To understand this smallworld effect in more quantitative terms, a simple
model, the so-called Strogatz-Watts-model, was investigated in more detail in
[11],[12],[13] and a little bit later also in [14].

In its most tractable form it consists of N linearly ordered vertices (nodes)
with periodic boundary condition (i.e. node xN is linked to node x1). In general
each node may also be linked to its regular neighbors up to order k. The generic
case is already given for k = 1 (i.e. nearest neighbors only or ZN ).

To mimic the random-rewiring of edges of the original Strogatz-Watts-model,
it is convenient to superimpose the given regular graph by a random graph, living
over the same set of vertices. While we prefer to introduce the so-called edge-
probability p, that is, the independent probability for the existence of an edge
between two nodes, as is usually done in the random graph framework (see e.g.
[15],[16]), some authors (for certain reasons, which come from the original idea
of rewiring existing links) made a different choice, referring the probability of a
random edge (or shortcut) to the number of nodes, N , in the graph (for the case
k = 1!). The relation between these two probabilities, p and φ is descibed at the
beginning of the following section.

Important (random) graph characteristics to be employed in detecting the
small-world effect are the (expected) diameter of the graph and the mean-distance
between pairs of nodes. A little bit surprisingly, it turns out to be possible to
estimate or calculate these quantities in the Strogatz-Watts-model as functions of
the two parameters, N and p or φ. This is remarkable as one has to deal with
two coupled nonlinear difference or differential equations for the variables f (n)
and g(n) described in the following section or the figure caption to figure 1. The
degree of nonlinearity varies of course depending on the extent of approximations
being made.

The general observation is that, depending on the number of shortcuts in
the network, there exist several regimes in the parameter space. To put it more
succinctly, we solve, on the one hand, the equations of the model for fixed p and
N . On the other hand, it is interesting to study the limit N → ∞ with p(N ) now a
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Fig. 1. The smallworld model for k = 1. The number of nodes is N = 30. In this particular realisation
we have inserted four additional shortcuts. The unfilled nodes are the vertices which can be reached by
≤ 3 steps starting from node x , the step-number will be denoted by n in the following. The black nodes
are the vertices not reached after three steps, their cardinality being denoted by f (n) (free nodes). This
set consists of three connected subsets which are separated by the subsets of nodes already reached.
The number of segments of free nodes is denoted by g(n) (gaps).

function vanishing for large N . That is, in this latter case, we analyse the different
asymptotic regimes around the “point” (N = ∞, p = 0). In the first case one can
study the change of behavior of the network for either N fixed and changing p or
vice versa.

For very small p (more precisely, very few shortcuts) the average distance, for
example, scales linearly with N . For still quite small p one expects a (transition
like) threshold or, rather, a threshold region, above which the average distance
(or the diameter) scales roughly like in a sparse random graph, i.e. more or less
logarithmically. There was a certain debate about the nature of this transition zone.
We show in the following that instead of a threshold one actually has a relatively
“broad” cross-over region in which the scaling changes in a smooth way from
linear through ∼ N ε[(1 − ε) ln N + O(1)] (in first order) to ln N depending on
p. More precisely, if we scale p with N and choose N large the corresponding
values of the edge probability are p ∼ N−2 (linear), p ∼ N−(1+ε) (intermediate),
p ∼ N−1 (logarithmically), respectively. The original threshold was (in our units)
conjectured to occur for p ∼ N−2.

Another interesting conjecture, which was then corroborated both numeri-
cally and by plausibility arguments, was a finite-size-scaling ansatz for the shape
of the functional dependence of the average distance, L , on N and p. We were
able to confirm this ansatz modulo some deviations which occurred in a certain
region of the parameter space.
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At the end of the paper we introduce a (fractal-like) notion of dimension for
networks and calculate the dimension of the small-world-network.

To briefly characterize our own approach, we include, on the one hand, more
possibly relevant terms making hence the evolution equations more complicated. In
contrast to using then approximate solutions we manage to derive upper and lower
bound comparison difference equations (differential equations) for the “exact”
solutions, which allow us to enclose them from above and below. By this method
we are able to compare the reliability of the various (approximate) results produced
in the literature, relate them to our exact bounds and represent them in a single
diagram. Last but not least we were quite scrupulous to compensate for the possible
quantitative errors (coming from overcounting) which are easily introduced by
being too cavalier as to the (thumb rule like) spreading argument frequently
envoked for random graphs.

We expect that our method of providing comparison difference or differential
equations for complicated non-linear equations, which, on their side, are presum-
ably not solvable, may represent a strategy which might prove useful in a more
general context.

2. THE DESCRIPTION OF THE SMALL WORLD MODEL

We start from the graph ZN , i.e. N nodes on a line with periodic boundary
condition; that is, node xN is linked to node x1.

Remark: To make the red thread of our analysis better visible, we treat for the time
being only the nearest neighbor model. A node xi is only connected to xi±1 (i.e.
k = 1, or coordination number z = 2). The more general case is a straightforward
generalisation and can be reduced to the case k = 1 by a renormalization step, cf.
[12].

In a next step we superimpose this graph with a true random graph, living
on the same N nodes and having independent edge probability p (cf. for example
[15] or [16]). This entails that the expected number of random edges in our model
is p · N (N − 1)/2 (the average vertex degree in the respective random graph) and
the expected number of random edges being incident with a fixed but arbitrary
node, xi , is p · (N − 1). Note that with this definition it may happen that some
of the nearest regular neighbors of a node x0, can now also be linked to x0 by
a random edge. This plays however no role in the global analysis and could of
course be avoided but makes the numerical analysis more compact.

The above p should be compared with the probability, φ, occurring in [12]
or [13]. The latter one is referred to the existing number of regular (non-random)
edges, that is k · N , or N for k = 1. The reason for this derives from the original
model in which existing edges were randomly rewired. Thus, for k = 1, φ leads
to an expected number of random edges in the graph equal to φ · N instead of
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p · N (N − 1)/2 in our model (N large). The two probabilities are hence related
by

p = 2φ/(N − 1) (1)

if we refer them to the same global expected number of shortcuts in the superim-
posed random graph.

We are in particular interested in the small world effect. What is usually
studied is the mean distance, L(G), between two arbitrarily selected nodes, xi

and x j . Note that graphs are discrete metric spaces in a natural way, the distance
d(xi , x j ) being given by the length of a shortest path, connecting them (number
of consecutive edges). If the individual realisations of graphs or networks belong
to a sample (probability) space, an averaging has to be performed both over the
selected pairs of nodes and the sample space (cf. [12] or [10]).

This quantity is closely related to another important graph characteristic, the
(expected) diameter, which we will study in the following. Choosing an arbitrary
start node, x0, the graph metric allows to define l-neighborhoods, Ul(x0), with

Ul (x0) = {xi , d(x0, xi ) ≤ l} (2)

and their respective boundaries, defined by

�l (x0) = {xi , d(x0, xi ) = l} (3)

With |�l(x0)| denoting the number of nodes lying in �l(x0), the sequence of this
values is called the distance degree sequence relative to node x0 and is denoted
by dds(x0). When tabulating this for the full node set we arrive at the distance
distribution dd(G) = {D1, D2, . . . , } with Dl the number of pairs of nodes having
distance equal to l ([17] or [10]). We have the following formula for the mean
distance:

L(G) = M−1 ·
D∑

l=1

l · Dl (4)

with M = N (N − 1)/2 being the number of different pairs of nodes. The number
D = D(G), that is, the maximal distance occurring in this counting is called the
diameter of the graph.

Evidently, L(G) and D(G) cannot be expected to be the same numerically
but in the generic situation one may surmise that they are closely related and scale
in the same way for, say, N → ∞ (being motivated by the qualitative picture of
spreading in a random graph). While the precise analytic calculation of the degree
sequence dd(G), the mean distance or the diameter is a quite ambitious task in
the random graph framework (see for example [15]), the qualitative behavior can
be inferred as follows.
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If the edge probability, p, is sufficiently low, a randomly selected node, x0,
has on average p · N neighbors and roughly p2 N 2 second neighbors and so on as
long as the number of vertices being reached is not to large compared to the total
number N . If this latter condition does no longer hold, the probability increases
that one meets a given vertex twice. Hence, due to this overcounting the true
numbers are systematically smaller, the deviations becoming appreciable when N
is approached.

In the sequel we therefore employ the following strategy. Instead of calculat-
ing the exact distance degree sequence or the exact diameter of our small world
model, we calculate, among other things, the number of steps necessary to reach
the fraction α · N of nodes with α preferably chosen as 1/2. In this way we hope
to avoid the problems of overcounting at least to a large degree, while, on the other
hand, we expect the scaling behavior of the respective quantities to be more or less
the same as for the true numbers.

3. THE DERIVATION OF THE EVOLUTION EQUATIONS

As we remarked at the end of the preceding section, we want to estimate the
expected number of steps necessary to reach, for example, half of the number of
vertices, starting from a fixed but arbitrary vertex, x0. We expect that this quantity
displays the same N - and p-dependence as the mean distance or the diameter of
the network or graph under discussion, avoiding at the same time the problem of
overcounting or, on the other hand, of very complex equations when approaching
the total number of vertices, N .

As has been done in [13], we choose the following two variables.

Definition 31. f (n) denotes the expected number of nodes, not reached after n
steps, starting from an arbitrary but fixed node, x0 (“free nodes”). g(n) denotes
the number of gaps, that is, the number of (connected) segments of nodes, lying
on the original ZN , not yet reached and which are separated by the segments of
nodes already reached after n steps (cf. figure 1).

We note that our evolution equations describe the evolution of mean- or expected
values. In some respects this approach hence shares some characteristics with
what one calls mean-field theory in statistical mechanics (cf. also [13]). However,
we think, the approximations being made by us are not so drastic as in typical
mean-field models, where, among other things, Hamiltonians are typically strongly
modified (frequently almost linearized). This is not the case in the small-world
model which, in particular in our approach, contains strongly non-linear terms
which encode at least part of the fluctuation content in integrated form (see, for
example, the discussion about the inclusion of terms incorporating the effects of
very small gaps around eqn (10)). In a sense, what we call “full equations” in
the following rather describe the behavior of a “typical” or generic small-world
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graph. So it does not come as a terrible surprise that the evolution equations for
the expected values are in relatively good agreement with what follows from real
numerical simulations of the model.

On the other hand, statistical fluctuations and correlation are not really treated
by us while this could be done in principle as the underlying probability space is
explicitly given, that is, the regular graph ZN superimposed with a random graph
for which probability theory is well established. One therefore may make the
slightly vague statement that the small-world model is, depending on the degree
of approximations, of an intermediate character.

To arrive at equations which are not only asymptotically correct or are only
good in a restricted region of parameter or phase space, we try to include as
many relevant terms as possible (under the proviso that the resulting coupled and
non-linear difference or differential equations are still solvable). We start with
the difference equation, describing the expected change of the number of gaps
between consecutive steps.

For n = 0 we have exactly one gap, comprising all the nodes except x0, that
is we have g(0) = 1. The number of gaps increases only due to the consecutive
inclusion of shortcuts with increasing n, connecting pairs of nodes in a random
manner and being parametrized by the edge probability p. The main contribution
in consecutive steps, n → (n + 1), comes from the term +2pg(n) f (n). We will
further explain it after the introduction of equation (6). There exists however
another contribution which acts in the opposite direction and which becomes
relevant when already many gaps do exist. This term reads −2g(n)2/ f (n) and is
of a purely combinatorial (more involved) character to be explained below when
discussing equation (6).

The initial condition for f reads f (0) = N − 1. For k = 1 each gap of free
nodes shrinks by two in the next step provided the gap comprises more than one
node. Neglecting in a first step this latter possibility, the first contribution is hence
of the form −2g(n). Then there is a contribution coming from new shortcuts of
the form −2pg(n) f (n). The overcounting in the first term (neglection of one-node
gaps) has now to be compensated by a term +g(n)2/ f (n). The emergence of this
and the corresponding term in equation (5) will be explained in greater detail
below.

Observation 3.2.

g(n + 1) − g(n) = 2pg(n) f (n) − 2g(n)2/ f (n) (5)

f (n + 1) − f (n) = −2g(n) − 2pg(n) f (n) + g(n)2/ f (n) (6)

We furthermore have the following apriori bounds which immediately follow
from the meaning of the respective variables in our model system:
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Lemma 3.3. We have g(n) ≤ N/2 and g(n) ≤ f (n).

Proof: Each gap is followed by a non-empty string of nodes being already
covered, hence the first inequality. The second one follows as each gap contains at
least one node. �

The occurrence of the term 2pg(n) f (n) can be understood as follows. In
each step, n → (n + 1), the two endpoints of each of the g(n) gaps may become
the source of new shortcuts to the remaining f (n) free nodes, the expected number
being p f (n). This leads hence to a term of the above form in both equations. One
can even be a little bit more precise if one wants to. New gaps are not created if the
shortcuts end at free nodes which are adjacent to nodes already reached. There are
on average 2g(n) of them. That is, in the equation describing the evolution of gaps
the correct term is 2pg(n)( f (n) − 2g(n)). The equation describing the evolution
of f (n) is not altered. This additional correction term is always negative and we
could in principle incorporate it in the following. It will make the whole numerics
slightly nastier without making a big effect. So we will largely neglect this term
but will incorporate it into what we call the “full equations,” see (18).

The other quadratic nonlinear terms are slightly more intricate and of a more
stochastical nature. While in equation (6) gaps containing only one node will
contribute only one instead of two nodes in the difference equation, in equation
(5) gaps vanish in the next step if at level n they contain only one or two nodes. The
probability for the existence of such gaps will now be calculated. We begin with
the case of one-gaps. We will solve this problem with the help of the well-known
partitioning problem of a given set into disjoint subsets. We associate the set of g
gaps and f free nodes with f balls to be distributed over g boxes. In general there
exist (

f + (g − 1)
g − 1

)
=

(
f + (g − 1)

f

)
(7)

combinations (see [21] or [22]). In effect we calculate the number of different
words of length f + (g + 1) consisting of (g + 1) bars and f dots, under the
proviso that each word begins and ends with a bar and that each consecutive pair
of bars is divided by a non-empty string of dots as in our case no box can be empty.
This implies that we can place exactly one ball in each box and perform the above
calculation, (7), which represents the number of partions without the constraint of
non-empty boxes, for the remaining number of ( f − g) balls, yielding

A :=
(

f − 1
g − 1

)
(8)

configurations. This is the cardinality of the set of elementary events in our
probability space.
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To calculate the expected number of gaps containing only one or two nodes,
we introduce the following random variables, Y1, Y2 over the probability space of
words, we associated with the random graphs G j :

Yi (G j ) := #{gaps of length i} (9)

in each of the above A configurations (graphs), G j . Before we proceed a short
remark as to the probabilities of the individual configurations should be in order.

In our model probability space a regular graph is superimposed by a random
graph with edge probability p. In our above calculation we deal with fixed numbers
f and g. As the gaps arise due to the existence of random edges, the gaps are
expected to be randomly scattered over the regular graph ZN in basically the same
way as pairs of nodes are linked by random edges, that is, almost independently.
This then should also essentially hold for the number of gaps, met after n steps.
Furthermore, this reasoning should not be affected in a serious way by the possible
annihilation of gaps for large step-number n, as long as we stay away from the
regime where the spreading argument for random graphs is no longer correct.
From this we see that it is a reasonable strategy to remain below the value N/2
with the step number n. We hence conclude that in the indicated regime each
configuration should have the independent probability A−1.

We therefore have

E(Yi ) = A−1 ·
∑

j

Yi (G j ) (10)

For the one-gaps we can represent Y1 by more elementary random variables, yk

with k running from 1 to g, enumerating the existing g gaps and yk = 1 if gap (k)
contains only one element and zero else. This yields

Y1(G j ) =
∑

k

yk(G j ) (11)

and

E(Y1) =
∑

k

E(yk) = g ·
(

f − 2
g − 2

) /(
f − 1
g − 1

)
(12)

where (
f − 2
g − 2

) is the number of configurations with only one element in gap (k).

Correspondingly we get for the expected number of 2-gaps:

E(Y2) = g ·
(

f − 3
g − 2

) /(
f − 1
g − 1

)
(13)

For the one-gaps this yields

E(Y1) = g · g/ f (14)
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For the two-gaps we have

E(Y2) = g · (g − 1) · ( f − g)

( f − 1) · ( f − 2)
(15)

and for f large, i.e. f ≈ ( f − 1) ≈ ( f − 2):

E(Y2) ≈ g · (g/ f − 1/ f − g2/ f 2 + g/ f 2) (16)

With our apriori estimate g ≤ f and as we start from the initial conditions f (0) =
(N − 1) ≈ N , g(0) = 1 in most of our phase space the dominant contribution
comes from the term g · g/ f also in the case of two-gaps.

Conclusion 3.4. The expected number of one- or two-gaps is approximately

E(# (1 − or 2 − gaps)) ≈ 2g2/ f (17)

(Note that in our probability space the possibility of being a 1-gap or a 2-gap
is mutually exclusive). This result explains the occurrence of the correction terms
in our evolution equations. Without these approximations, the equations (5) and
(6) would read

g(n + 1) − g(n) = 2pg( f − 2g) − g · (g − 1)

f − 1
− g · (g − 1) · ( f − g)

( f − 1) · ( f − 2)
(18)

f (n + 1) − f (n) = −2g − 2pg f + g · (g − 1)

f − 1
(19)

with f and g instead of f (n) and g(n) on the rhs. We’ll refer to these as “full
equations” and compare them with the simplified ones ((5) and (6)) in figure 2.
Note in particular that we approximated the last term occurring in 18 by −g2/ f in
5, neglecting the positive higher order contribution, being essentially of the form
+g3/ f 2.

A brief comment is in order as to the corresponding formulas derived in [13]
(cf. their formulas (3),(6) or (A10),(A11)). We decided to neglect all terms in
(16) except the leading one, g2/ f , which is reasonable in our view. In [13], in the
corresponding equation an additional term of the type g/ f occurs (derived by a
different argument). On the other hand, more important in our view is equation
(6), which comprises three terms in our approach (including a nasty non-linear
one, g2/ f ), while in [13] only the first one, −2g, occurs on the rhs. This makes the
corresponding equations of course much easier to solve but may only be a good
approximation in a restricted regime of parameter space (see the brief discussion
at the end of section 2). We discuss and compare the numerical results in section
3. One can see that the solution of [13] is similar to our lower bound-equation for
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Fig. 2. The function f (n) for two examples. Left side: N = 104, p = 10−7, ε = 3
4 ; right side: N =

104, p = 10−5, ε = 1
4 (with p normalized to N−(1 + ε) ). The upper diagrams show 20 realisations,

their mean value (averaged over fixed n) and the analytical bounds of (45). The lower diagrams show
these bounds and the averaged curve again, together with the numerical solutions of the difference
eqns (18,19) and (5, 6). In both cases the averaged curve exceeds the solution of the difference eqns
(notice however the perhaps surprisingly large standard deviation), but doesn’t top the upper analytical
bounds. The solutions of the full eqns (18, 19) only differ notable from the simplified ones (5, 6) in
the left, nearly linear case, the neglection of the additional combinatorial terms was hence justified.
Yet, what can’t be seen in these diagrams is that, in contrast to the full ones, the solution of the
simplified eqns does not sink to zero, and even crosses the upper boundary for large n. This is however
neither surprising nor important, as our boundary eqns are only guaranteed to hold in the interval
f (n) ∈ [N/2, N ], thus we omit an additional logarithmical diagram.

f (eqn (45)), which is reasonable as in our lower bound for f the quadratic term
is largely suppressed (cf. the following section and figure 3).

4. SOLUTION STRATEGIES

The above system of evolution equations contains non-linearly coupled quan-
tities and can be solved only in very exceptional lucky circumstances. Instead of
making more or less uncontrollable approximations, we develop the following
strategy. We try to enclose the above exact equations by comparison equations
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Fig. 3. Universal scaling functions.

bounding the exact solutions, f (n) , g(n), from above and below, the correspond-
ing variables being denoted by

f (n) , f (n) , g(n) g(n) (20)

The problem is that, on the one hand, the comparison equations have to be
so chosen that they can be rigorously solved and, on the other hand, these bounds
have to be quite good so that we are able to infer something relevant also for the
enclosed exact equations in particular for the scaling limit N very large and p a
vanishing function of N . A central role will be played by the value n∗ for which
we have reached on average N/2 of the nodes when starting from an arbitrary but
fixed node x0 (or more generally αN nodes with 0 < α < 1). In other words, the
range of n-values we are using is restricted by

n ∈ [0, n∗] so that (N − 1) = f (0) ≥ f (n) ≥ αN (21)

We now study the rhs of the equations (5), (6). For one, we assume that these
equations have been solved for our initial conditions g(0) = 1 , f (0) = N − 1, so
that g(n) , f (n) now represent particular functions of n. On the other hand we can
regard the rhs (dropping the dependence on the variable n) as functions on the
phase space, spanned by the possible values of the variables g , f . In our assumed
range of possible parameters and variables we have the estimate

2pgN − 2g2/N ≥ 2pg f − 2g2/ f ≥ 2pg · (αN ) − 2g2/(αN ) (22)
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The idea is now to introduce the comparison difference equations

g(n + 1) − g(n) := 2pN g(n) − 2g(n)2/N (23)

and

g(n + 1) − g(n) := 2p(αN )g(n) − 2g(n)2/(αN ) (24)

with the initial conditions

g(0) = g(0) = g(0) = 1 (25)

For the initial differences we have

g(1) − g(0) > g(1) − g(0) > g(1) − g(0) (26)

Our strategy is now to use these comparison equations to learn something
about the true equations. Unfortunately matters are not so transparent for difference
equations as compared to differential equations. The reason is that they are only
given at discrete points and may (therefore) display a more complex behavior
(see for example Hoelder‘s theorem and extensions thereof in [18], p. 283 or [19],
p. 220). Due to these problems we will in the following go over to the corresponding
differential equations, being however aware of the fact that it does not seem to
be an easy task to provide good error estimates, in particular as the differences
in our context are not infinitesimal (as to this interesting question of principle cf.
the discussion in [23]). What is furthermore remarkable is the observation (see
below) that we can prove a useful theorem in the case of differential equations the
analogue of which, as far as we can see, we cannot prove for difference equations
(at least with the same methods).

The corresponding differential equations read:

g′(x) = 2pg(x) f (x) − 2g(x)2/ f (x) (27)

f ′(x) = −2g(x) − 2pg(x) f (x) + g(x)2/ f (x) (28)

with g(0) = 1 , f (0) = (N − 1) , x ∈ [0, x∗] so that (N − 1) ≥ f (x) ≥ αN . The
comparison differential equations with respect to g(x) are

g′(x) = 2pN g(x) − 2g(x)2/N (29)

g′(x) = 2p(αN )g(x) − 2g(x)2/(αN ) (30)

with g(0) = g(0) = 1.
As to equation (28) we proceed as follows (we note that we in fact experi-

mented with different possibilities; the one we are presenting below seems to be
the most appropriate one). We mentioned above the apriori bound g ≤ f . For the
rhs of equation (28) we then have:

−2g − 2pg f + g2/ f ≤ −2g − 2pg f + g = −g − 2pg f (31)
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On the other hand we have also

−2g − 2pg f + g2/ f > −2g − 2pg f (32)

Therefore our comparison differential equations for f are

f
′
(x) = −g(x) − 2pg(x) f (x) (33)

f ′(x) = −2g(x) − 2pg(x) f (x) (34)

with f (0) = N , f (0) = N − 2.

Remark: As N is supposed to be very large, it does not make a big difference for
the numerical calculations to let all the initial values be equal to N . The above
choice makes the analytic argument a little bit simpler (see below).

To further exploit these comparison equations we proceed as follows. Note
that we have succeeded in decoupling the equations for f and g. We can solve
the differential equations for g and g and plug the solutions into the f - and f -
equation. We assume that together with the comparison differential equations the
original differential equations for g and f have been solved for the mentioned
initial conditions. In the differential equation for g with initial condition g(0) = 1
we can then regard the corresponding f -solution as an external function with g(x)
solving this “new” differential equation (together with the given initial condition).
We compare the solution g(x) of this latter equation with the solutions of the
differential equations for g , g respectively. We have

g(0) = g(0) = g(0) = 1 and g′(0) < g′(0) < g′(0) (35)

We now prove the following result.

Proposition 4.1. Let y1(x) and y2(x) be solutions of the two differential equations

y′
1(x) = F1(y1, x) , y′

2(x) = F2(y2, x) (36)

on the interval [0, x∗] with y1(0) ≤ y2(0). Let F1 , F2 fulfil

F1(y, x) < F2(y, x) (37)

on the domain [0, x∗] × Iy, Iy a suitable y-interval and with both y1(x) , y2(x)
staying in this domain. Then

y1(x) ≤ y2(x) on [0, x∗] (38)

Proof: From the assumptions it follows that y1(x) < y2(x) in some open in-
terval (0, ε). If y1(x) > y2(x) for some x , there exists an r > 0 (by continuity)
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with y1(r ) = y2(r ) and y1(x) > y2(x) in an open interval (r, r + ε′). But this is a
contradiction since

F1(y1(r ), r ) < F2(y1(r ), r ) (39)

hence again implying that y1(x) < y2(x) in an open interval (r, r + ε′′). We
conclude that y1(x) ≤ y2(x) on [0, x∗]. �

It sometimes happens that we have F1(y, x) < F2(y, x) on the open interval
(0, x∗) but F1(y(0), 0) = F2(y(0), 0) for some value y(0). We then can prove the
following corollary:

Corollary 4.2. Making the same assumptions as before except for F1(y(0), 0) =
F2(y(0), 0) instead of F1(y(0), 0) < F2(y(0), 0). We assume that there exists a
parameter λ so that on the closed interval we have

F1(y, x ; λ) < F2(y, x) (40)

for λ > 0 and F1(y, x ; 0) = F1(y, x), the dependence on λ being continuous or
differentiable. Then the parameter dependent solutions converge pointwise towards
the solutions for λ = 0 (cf. [20]). For λ > 0 our above result applies. So, by
continuity it applies also in the limit λ → 0.

Note that in our case the parameter λ is the parameter taking the values
N , N − 1 etc.

Remark: We surmise that such comparison results are known in the large literature
about differential equations but we were unable to find a reference.

Conclusion 4.3. What we have now shown is that under the assumptions being
made, g , g and f , f are upper and lower bounds of the corresponding solutions
g , f of the original differential equations.

5. THE QUANTITATIVE RESULTS

With our α being now either 1 or 1
2 we can express both the upper and lower

bound by a single equation:

g̃′(x) = 2 α p N g̃(x) − 2 g̃(x)2

α N
(41)

with g̃ = g for α = 1 and g̃ = g for α = 1
2 . This nonlinear differential equation

(of Bernoulli type) can be transformed into a linear one with the help of the
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transformation z := g̃−1 and yields with the initial condition g̃(0) = 1 the solution

g̃(x) =
((

1 − 1

p α2 N 2

)
e−2 p α N x + 1

p α2 N 2

)−1

(42)

Inserting these solutions into the corresponding upper and lower bound equations
for f (x)

f
′
(x) = −2 p g(x) f (x) − g(x) (43)

f ′(x) = −2 p g(x) f (x) − 2 g(x) (44)

and introducing the parameter β ∈ {1, 2} so that f̃ ′ = −2 p g̃ f̃ − β g̃ we obtain
(after a simple variable transformation, f → f + 1/2p, f → f + 1/p, and sep-
aration of variables) the following result, using f (0) = N as initial condition
instead of N − 1:

f̃ (x) = 2 p N + β

2 p

(
1 − 1

p α2 N 2
+ 1

p α2 N 2
e2 p α N x

)−p α N

− β

2 p
(45)

We are interested in the value x̃∗ of x for which f̃ = 1
2 N . Solving for x̃∗ yields

x̃∗ = 1

2 α p N
ln

([(
2 p N + β

p N + β

) 1
p α N

− 1

]
p α2 N 2 + 1

)
(46)

the lower bound being assumed for α = 1, β = 2 the upper bound for α = 1
2 and

β = 1.

Remark: The argument of the logarithm is always larger than one, as ((2pN +
β)/(pN + β))1/pαN > 1 and pα2 N 2 > 0. We furthermore want to stress the im-
portant point that a too poor approximation of, say, the upper bound, f (n), may
easily lead to a function which does not decay sufficiently. In that case our esti-
mates would have been useless. We see however that our above choice is strong
enough.

We now want to investigate the scaling regime N → ∞, p = cN−1−ε with
ε ∈ [0, 1], c > 0, with the boundary cases p ∝ N−1 and p ∝ N−2 being particu-
larly interesting. Inserting these choices into the preceding equation we get

x̃∗ = N ε

2 α c
ln

([(
2 c N−ε + β

c N−ε + β

) Nε

c α

− 1

]
c α2 N 1−ε + 1

)
(47)

For ε = 0 we have

x̃∗ = 1

2 α c
ln N + C1(α, β, c) (48)



An Analysis of the Transition Zone 271

with C1 being of the precise form:

C1 = (2α c)−1 · ln

(
cα2

[(
2c + β

c + β

)1/cα

− 1

]
+ 1/N

)
(49)

which becomes asymptotically independent of N for large N .
For ε �= 0 we have (developing the logarithm up to the first order)(
2 c N−ε + β

c N−ε + β

) Nε

c α

= exp
N ε

c α

[
ln

(
2 c

β N ε
+ 1

)
− ln

(
c

β N ε
+ 1

)]
(50)

= exp
N ε

c α

[
c

β N ε
+ O(N−2ε)

]
(51)

= exp

(
1

β α
+ O(N−ε)

)
(52)

and get

x̃∗ = N ε ((1 − ε) ln N + ln([exp(1/αβ) − 1]cα2 + 1/N 1−ε))

2αc
(53)

which obviously also describes the boundary cases ε = 0 and ε = 1 (provided we
would include the neglected term O(N−ε) which is now O(1)). This behavior is
valid both for the upper and lower bound of f . As the x∗ for the true f has to lie
between the respective values for the upper and lower bound we infer that it has
the same scaling behavior for N → ∞.

Conclusion 5.1. We infer that between p ∝ N−1 and p ∝ N−2 there exists a
broad transition zone with the scaling of the diameter or mean distance exactly
interpolating between these two boundary cases, x∗ ≈ ln N and x∗ ≈ N (up to
now we have only studied the scaling of x∗, a parameter which is of course closely
related to the above mentioned graph characteristics; see below).

In our above calculations we dealt with the expected value, x∗, at which the
expected number of free nodes drops to the value N/2. We argued above that the
corresponding (exact) formulas for the value, at which this number assumes the
value zero, would be much more complicated. To make nevertheless a statement
about this value we apply the following (plausibility) argument (which, however,
should not be viewed as a rigorous proof). Put differently, we will provide an
argument which is expected to hold only for expectation values or typical nodes.
Let X be an arbitrary initial vertex and X ′ a vertex with largest possible distance
to X in a given realisation of the network. The expected radius of the N/2-
neighborhoods for both vertices is equal to x∗. In case the corresponding x∗-
neighborhoods U∗(X ) and U∗(X ′) of X and X ′ are not disjoint the distance between
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X and X ′ must be less than 2 x∗. If these neighborhoods are disjoint the graph G
is a disjoint union of U∗(X ) and U∗(X ′) and hence the distance between X and X ′

must be exactly 2 x∗. As all these arguments apply only to the generic case, we
can associate this value with the expected diameter of our network, denoted by D
and get the estimate

x∗ ≤ D ≤ 2x∗ (54)

Remark: We again emphasize that this argument is only correct in an averaged
sense in which all nodes are assumed to stand on the same footing. It is of
course easy to design particular graphs where this estimate does not hold. Take
for example a graph having a densely entangled neigborhood around some node
x from which a long one-dimensional string emanates. In this case the diameter is
of course much larger than 2x∗. We think one could prove something rigorous at
this place, which, on the other hand, may be a little bit tedious and unnecessarily
blow up the paper.

On the other hand we infer from equation (4) that the average distance, L
fulfils

L ≤ D (55)

Taking again a typical node, X , (so that its neighborhood U∗ has approximately
N/2 members), we can approximate the mean distance L by (N − 1)−1 · ∑

l · |�l |
and get the estimate

L ≥ (N − 1)−1 ·
(

x∗−1∑
1

l · |�l | + N/2 · x∗

)
≥ x∗/2 (56)

as ∑
l≥x∗

l · |�l | ≥ x∗ ·
∑
l≥x∗

·|�l | ≥ x∗ · N/2 (57)

We thus get

x∗/2 ≤ L ≤ D ≤ 2 x∗ (58)

We can now insert the respective parameters, α and β in our expressions for x̃∗,
thus yielding

xα=1,β=2
∗ /2 ≤ x∗/2 ≤ L ≤ D ≤ 2 x∗ ≤ 2 x

α= 1
2 ,β=1

∗ (59)

With our numerical expressions for the upper and lower bounds we get

1

4pN
ln

([(
2pN + 2

pN + 2

) 1
pN

− 1

]
pN 2 + 1

)
≤ L
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≤ 2

pN
ln

([(
2pN + 1

pN + 1

) 2
pN

− 1

]
pN 2

4
+ 1

)
(60)

For very small (ε > 1 such that pN 2 → 0) or vanishing p the inequality
reduces to 0.16 N ≤ L ≤ 3.19 N , with L = 0.25 N for the true L in the case
p = 0. For p = cN−1−ε , c of order one and ε ∈ [0, 1], and a reasonable number
of shortcuts (pN 2 > 1), L displays a behavior already exemplified for x∗:

L ≈ C2 N ε

c
((1 − ε) ln N + ln c + C1(c)) (61)

with C1 constant for ε �= 0. For very strongly connected graphs (ε ∈ [−1, 0)),
these bounds become invalid, as L tends to one and the differential equations will
no longer approximate the difference equations well enough.

We want to come back to the question of the importance of the non-linear
quadratic terms in our evolution equations (5) and (6). One may be led to the
wrong conclusion that they are always marginal because initially g is very small
compared to the huge f . But one should note that g grows very fast for certain
choices of the parameter p. To get some feeling we take, for example, g and ask
for what values of x g2/N is of order g.

This is the case if g ≈ N . The result strongly depends on the value of p.
Inserting p = c/N in the equation for g and solving for x we get x ≈ (2c)−1 ·
ln N . Hence the quadratic contribution becomes appreciable when x approaches
the regime where f drops to N/2, that is, the regime we are interested in. Put
differently, it is dangerous to neglect this term on apriori grounds.

On the other hand, taking for example p = 1/N 2, and making the same
calculation we infer that the non-linear term remains negligible in the domain we
are interested in. For ε > 0 we get of course intermediate results.

The effects of neglecting the even smaller combinatorial terms which appear
in the full eqns (18) and (19) can be seen in figure 2: Here the neglection has a
greater effect for the case p = 1/N 2 than for p = 1/N , as the total number g of
gaps in the first case is smaller and therefore nearer to 1 than in the second case.
Nevertheless,these discrepancies are still negligible.

6. COMPARISON WITH FORMER RESULTS

Barthélémy and Amaral, and later also Newman and Watts ([11],[12])
conjectured a scaling behavior for L of the form

L = N · F(pN 2) (62)

with some universal function F with F(y) → 1
4 for y → 0 and F(y) → C ln(y)/y

for y → ∞. Our bounds do not scale exactly in this way, but at least do so
approximately for large N and ε > 0. In this regime the pN -dependend term in
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the logarithm tends to the constant exp(1/αβ) and our bounds assume the form

L = N · F(pN 2) with
1

4 y
ln ([e1/2 − 1]y + 1) ≤ F(y) ≤ 2

y
ln

(
e2 − 1

4
y + 1

)
(63)

On the other hand, for large pN and ε < 0 or ε = 0 with large c, this scaling behav-
ior breaks down and our estimate for the average distance scales like (ln N )/pN .
This estimate makes however only sense for ln N > pN , as L ≥ 1. Thus the case
ε < 0 isn’t described correctly by this formula. For ε = 0, L , according to this
scaling-ansatz, simply scales like (ln N )/c, without any correction term of the form
(ln c)/c, which occurs in our above presumably more exact result. So, although L
correctly scales with ln N in both cases (depicting a random graph), there exist
certain deviations for large c.

In [13], Newman, Moore and Watts found the following expression for their
universal scaling function

FNMW(y) = 1

2
√

y2 + 2y
tanh−1

√
y

y + 2
. (64)

For p ∝ N−2 (ε = 1) this function is a constant. On the other hand, for p =
cN−1−ε with 0 ≤ ε < 1, the argument y = pN 2 is large for large N and

L = N FNMW(pN 2) ≈ ln p N 2 + ln 2

4 p N
≈ N ε((1 − ε) ln N + ln c + ln 2)

4 c
(65)

In figure 3 FN MW and the scaling functions deriving from our bounds are shown,
indicating that the NMW-ansatz complies with them. Note however that this is
only valid for ε > 0 or ε = 0 with a not too large c in p = c/p.

In [14], Barbour and Reinert made a rigorous analysis of the probability
distribution for the distance function, getting the following result: Let X and X ′

be some randomly chosen vertices on G, ρ = pN and S := pN 2 (to be identified
with Lρ in [14]) then

P

[
d(X, X ′) >

ln S

2 ρ
+ x

ρ

]
=

∫ ∞

0

e−y dy

1 + y e2x
+ O

(
ex (1 + e2x ) ln2 S√

S

)
(66)

for all − 1
2 ln S ≤ x < 1

4 ln S. L is the mean distance resulting from this distribution
for d(X, X ′). To make things simpler, we instead treat the median of it, which can
be easily approximated by the special choice x = 0. Neglecting the error term we
obtain

P

[
d(X, X ′) >

ln S

2 ρ

]
≈ 0, 596 (67)
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stating L ≈ Lmedian ≈ ln(pN 2)/2pN or, with p = cN−1−ε ,

L ≈ N ε ((1 − ε) ln N + ln c)

2c
. (68)

The corresponding universal scaling function reads FBR = (ln y)/2y, and is also
depicted in figure 3. For pN 2 > 2 (at least one expected shortcut) this lies within
our bounds. Below this, the error term of the probability P rises above one and
FBR looses its meaning.

7. DIMENSION OF THE SMALL WORLD

In [24], two related dimensional concepts (of a fractal type) were introduced
for infinite graphs (note the close connection to the distance degree sequence,
discussed in [10]) and a number of its properties proved. We learned later that
this concept occurred already earlier in the literature but, as far as we can see, its
interesting properties were never systematically studied (see for example [25]). A
technically different but physically related concept was exploited by Dhar ([26]),
see also [27]. Furthermore Ising models on such irregular spaces were studied
recently, an early source being [28]. The reason to deal with infinite graphs is that
only in the limit N → ∞ the global notion of dimension becomes independent of
local (model dependent) aspects like e.g. coordination numbers of, say, lattices,
all having the same embedding dimension. One of the two definitions reads:

Definition 71. Let G be an arbitrary graph with N vertices and Ul(x) the
l-neighborhood of the vertex x ∈ G. Then we define the dimension of G (rel-
ative to x) as

dimx (G) := lim
l→∞

ln #Ul(x)

ln l
(69)

(provided the limit exists; in general we have to deal with lim inf and lim sup).

In [24] it was shown, that this notion of dimension (also called the “internal
scaling dimension”) is independent of the initial vertex x (under a mild technical
assumption). For finite (but large) and connected graphs we can instead employ
the following graph characteristic:

dimapprox(G) = ln N/ ln diam(G) (70)

For real networks this value has been analysed in [29]. There one can see, that the
approximate dimension might tend to underestimate other notions of dimension,
because ln #Ul (x) saturates for large x (an effect which is however pretty obvious
as the spreading argument does of course no longer hold in that regime). On
the other hand, in our case we expect ln #Ul(x) not to saturate before reaching
N/2 =: #Ul (x∗) (cf. figure 2). As x∗ ≤ diamG ≤ 2x∗ (see however the discussion
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after eqn(54)), we get

ln N − ln 2

ln x∗ + ln 2
≤ dimapprox(G) ≤ ln N

ln x∗
. (71)

Thus, for large enough N and x∗ the approximate dimension doesn’t deviate too
much when staying below N/2 and won’t suffer from saturating-effects.

Applying this concept to the Small World Model for large N we get

dimapprox (G) = ln N

ln diam(G)
= ln N

ln C1 N ε(C2 + ln N 1−ε)
(72)

which is ≈ 1
ε

for ε > 0, the constants C1 and C2 being independent of N (de-
pending only on c, α and β). For ε = 1 (p ∼ N−2) we get the value one, which is
reasonable for this rarefied linear case. For the opposite case, ε = 0 (p ∼ N−1),
we have

dimapprox (G) ≈ ln N/ ln ln N (73)

which diverges for N → ∞.
In [12], Newman et al. introduced a renormalization process for the Small

World Model. This process divides the graph into segments of length 2 and in-
terprets these segments again as vertices in a new Small World Model with size
N ′ = N/2 and edge-probability2 p′ = 4p. With p = c N−1−ε this substitution
yields p′ = c′ N ′−1−ε with c′ = 21−εc. Hence our dimapprox = 1/ε is constant
under this renormalization. A similar phenomenon was observed in the renormal-
ization process for infinite graphs (with globally bounded node degree) introduced
in [9].

8. CONCLUSION

We found the mean distance L of a Small World Model with N � 1 nodes
and edge-probability p = cN−1−ε to be bounded from above and below by two
expressions of the form C2 N ε(ln N 1−ε + C1) (the constants depending on whether
the upper or lower bound is taken). This implies a broad transition zone, in which
the mean distance drops from a linear growth to a logarithmic one, permitting
each power law L ∼ N ε for ε ∈ (0, 1). Furthermore, 1/ε can be regarded as an ap-
proximative dimension of the corresponding graph. Our results partly corroborate
earlier work but lead also to certain numerical deviations.

2 Note that our notation differs from that in [12].
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